
Qt AND
ANDROID

Let’s compare by building an embedded system
with a music player app on a NXP i.MX 8 Quad board.

<2>

Executive
summary

<3>

This white paper all started with Witekio software engineers wanting to
tackle a recurring question in the engineering community: should we
use Linux and Qt or Android Native for our next embedded product?
Qt and Android are often complementary (automotive, smartphone) and
Qt is platform agnostic*. Witekio teams complete an equivalent number
of Android and Linux/Qt projects. Everyone has their favorite, but no one
had ever achieved an exhaustive and unbiased comparison.

That is what Julien, Erwan and Stephen decided to do.

It was all about comparing Android and Qt, evaluating each solution’s
advantages and drawbacks from the point of view of embedded
software developers.

To achieve this, Witekio developers team decided to build on a real-life
example: develop a Music player app on an NXP i.MX 8 Quad board.
Their work first started with Julien comparing low-level OS choice
between Android and Linux. Then our 2 application developers, Erwan
and Stephen, faced each other in a breath-taking match to develop the
same application with Android and Qt. They compared both solutions
performance, step by step, and had heated discussions.
Their conclusion:

First, from a low-level perspective, it appears that, on the chosen board,
an NXP i.MX 8 Quad, Android’s strengths do not make it when opposed
to Linux performance (RAM, flash memory) and flexibility which allows
drastic boot time optimization.

At the applicative level, however, it is far less obvious to decide between
Android and Qt. Erwan and Stephen developed the same Music player
app, compared more than 15 criteria, and had passionate debates.
Their conclusion: Qt wins by a short head mostly on the data sorting
and filtering criteria.
To know more about the debate details, you can read the full article.

*Qt supports over 12 OSes https://doc.qt.io/qt-5/supported-platforms.html

<4>

The same question keeps coming up for developer
teams at Witekio: “Is it better to develop a user
interface with Qt, or with Android?”
In this white paper, we’ll try to answer that
question.
Rather than churning out ready-made facts and
theories, we’ve decided to give you answers
based on an actual example: developing a music
player application on an NXP board that’s geared
up to deal with connected objects, the i.MX8.
We’ll start by talking about the first step in any
embedded application project: choosing your OS.
Android or Linux?
Once this choice has been made, by Julien, you’re
invited to watch the face-off between Erwan and
Stephen:

Julien, our embedded software expert

Erwan, our Android expert

Stephen, our Qt expert

This simultaneous development will give us
a chance to really focus on the strengths and
weaknesses of each framework.

Choosing
an embedded
operating system
for our Music
Player App on i.MX.8

PA
RT

 1

Most embedded apps used today function
with a microprocessor and an embedded
Linux or Android operating system (OS).
Having an operating system gives them
several advantages. Primarily, it shortens
the development process. Developers can
use lots of different libraries, tools, and
frameworks that they’re already familiar with
to build and debug, like Qt, Electron, GDB,
SSH, and others. Updates are usually easier
and less risky long-term because the device
has a file system that helps avoid potential
write errors, particularly in case of a power
outage.

However, if your application is running on
a microcontroller, it is worth noting that as
of January 2020 Qt can work in that type of
environment. With the recent release of Qt
for MCUs (https://www.qt.io/qt-for-mcus),
Qt is available on an increasing number
of platforms, including real-time operating

systems like FreeRTOS. That tends to blur the
frontier even more between microcontrollers
and embedded microprocessors. The
main difference is that microcontrollers are
better at real-time tasks that necessarily
require little computing power,but need
to have extremely short response times
(close to a few microseconds). On the other
hand, microprocessors running Linux or
Android are more practical for feature-rich
applications, with complex user experience,
business logic, and connectivity.

Here, we will focus on two classic OS: Linux
and Android.

So our goal today is to choose between
Linux and Android for a system with a
microprocessor.

Is it better to use Linux or Android in terms of
criteria like security, flexibility, and usability?

Julien
embedded
software
expert

<5>

<6>

Choosing your OS: The Android
vs. Linux Face-Off

What are the arguments for using Android
as the OS for our system?

As a general rule, makers of evaluation
boards have a version of Android all ready
for their evaluation kit (EVK) that you can
download and install.

However, there are several problems. If you
want to develop your own hardware, porting
Android can end up being time-consuming
and expensive.

Android needs a large amount of RAM: 512
MB minimum. It also needs an important
size for the flash memory, with a minimum
recommended of around 1 GB.

When it comes to updates, Android supports
the Google Play Store on verified devices.
However, getting a device approved for the
Play Store is a long and costly process and
you probably won’t want to give the user
access to it, but updating a package is as
easy as downloading an APK (Android
Package File) and installing it.

For OS updates, all the tools are already
included in the latest versions of Android
by default, including support for dual bank
updates when properly configured.

Android is really an operating system
developed for mobile phones. If the specific
hardware you develop uses components that
aren’t usually a part of mobile phones (for
example, a CAN bus controller), the Android
framework won’t let you just implement it.

This is especially visible when it comes to
permissions and access controls: Android
itself mostly manages permissions to use
peripherals, not single files (although it is
possible to do so if you have root access,
which is quite dangerous). It works well
out of the box, but don’t expect a lot of
customizability.
Also, Android has several embedded
components that are necessary for mobile
phones but completely useless for most
connected objects. Removing these
components without breaking Android’s
overall operation is extremely complicated.
The overabundance of unused components
also increases the attack surface of your
connected object, for no good reason. One
final issue is that the boot time for Android
is generally much longer than for a classic
Linux system, and difficult to optimize. So
we can say that Android is practical for
developing and deploying a demo, but not
necessarily ideal for our finished product.

On the other hand, Android clearly has all
the right tools for smartphone development.
If your team is used to developing in Java
or Kotlin, using Android in your product will
let your high-level development team start
working on the project immediately, with no
ramp-up time! Also, if your product is similar
to a smartphone, requiring a desktop,
several applications, etc., Android might be
a good choice.

What are the advantages of
choosing Linux?

Linux is extremely flexible and customizable,
and the skills to do it are more common than
for customizing the Android image (which
actually uses the Linux kernel). Almost
all the components of the kernel and the
chosen distribution can be removed to make
something small that boots quickly and has
a minimal attack surface.

Moreover, Linux is a good RAM saver. In
most standard use cases with Qt, 128 MB
RAM is already quite comfortable, while
Android requires 512 MB minimum. This
allows considerable hardware cost savings.

<7>

Linux is also a flash memory saver. A basic
Linux system can easily fit into 10 MB and
a system including Qt can easily fit into 500
MB even with all the modules.

The main way to update Linux is to use
online repositories, much like the Google
Play Store but for both OS (kernel) and
software packages. You can make your own
easily. But how to do it will depend on what
package manager you use: apt, yum, dnf,
pacman… It can get confusing. You may
want to setup a custom solution, too, for
example to support dual bank updates or to
handle custom encrypted packages.

But it’s easy to add additional libraries,
you can customize the libraries you want
to install, and you can even customize the
kernel! The permissions system is also more
flexible and powerful than Android’s, and the
access controls are much more advanced,
which gives you access to top-level security,
using users, user groups, and individual file
permissions.

In short, Linux is very easy to customize.
Maybe even a little too easy. It can be a
little overwhelming, and you might not know
where to start! For example, which Linux
distribution do you want to use for your
system: Alpine, Ubuntu, Debian, Gentoo, or
something customized?

As a general rule, you should use Yocto
if you want to create a fully customized
distribution. Yocto ensures that your Linux
image build process generates something
valid that can be reproduced, analyzed and
easily adapted for whatever device you
want to produce. Yocto ensures that library
and software dependencies are respected,
and also lets you deploy an SDK so that
developers can deploy and test their apps
quickly.

Let’s now wrap up the
comparison between Android
and Linux!

Android may be easier to implement at
first, if:

• Your hardware platform supports Android
out of the box.

• All your peripherals are natively supported
by Android.

In this situation, you won’t have to recompile
the entire system or install additional
libraries, and everything will work right away.
But if you want to customize your system
(and I think that’s the best option) or use
features that aren’t available on Android by
default, it ‘s more efficient to use Linux. In
fact, I’d go so far as to say it’s better to use
Linux if you want a faster, more secure and
cheaper product.

Linux has several advantages over
Android:

• Linux can support systems with limited
resources. Using Android is recommended
for platforms that have at least 512MB of
available RAM, but you can easily run a
Linux and Qt with only 128MB of RAM. Linux
with Qt also has lower persistent storage
requirements. This allows for a lower bill
of materials, especially when choosing
Linux+Qt versus Android.

• It can greatly reduce the attack surface. If
you don’t need Bluetooth, you can remove
all the Bluetooth drivers and compatibility
from the kernel, which is much more difficult
on Android.

• It lets you significantly reduce the boot
time, much more than Android could. Times
as low as 2 seconds have been achieved
with basic customizations.

• You can (and I think this is important) build
a customized system to fit your product,
which reduces not only deployment size but
also energy consumption.

<8>

Comparison of Boot Statistics
for Linux and Android

Boot time optimization with Linux

It’s fairly easy to find Linux system boot
statistics. For an NXP i.MX 6 SABRE board,
this article tells you how to go about it.

https://www.witekio.com/blog/challenge-
called-boot-time/

i.MX 6-based boards are fairly common
and used in a wide variety of products.
This makes them a good reference when it
comes to boot time.

In the article, they began with a startup boot
time of over 22 seconds (which is honestly
still faster than my smartphone). That’s
much too long for a product that frequently
turns itself off. At that point, the image was
just the “standard” Yocto image, without
optimization. The goal was to reduce this to
under 2 seconds.

The first step was to select a preferred
graphical interface framework. The 3
considered choices were Qt, Cairo and
Enlightenment. In the end, Cairo was
chosen as the device didn’t have any GPU
which would make Qt suboptimal and
Enlightenment took too much time to start.
The second step was to tweak the
initialization process so that their application
is started before the rest of the system. This
effectively reduced the boot time to around
8 seconds.

The third step was to optimize the kernel.
By choosing the right kernel configuration
options, and particularly by removing
whatever wasn’t useful, they reduced boot
time to around 6 seconds.

The fourth step was to optimize the
configuration of the bootloader to make
loading the kernel faster, increasing the SD
card access clock frequency and replacing
the reset chips That got it down to a 1.99
second boot time.

A 2-second boot, just by doing simple
operations that also drastically reduced
image size and the attack surface.
Their process is explained in greater detail
in the article, particularly the tools they used
and their references.

I’m convinced that they could have gotten
the same kind of results with an i.MX 8.

Boot Time with Android
There are several techniques for optimizing
Android. The most common are the same as
for Linux, particularly the optimization of the
kernel and the boot loader.

Unfortunately, during boot, Android has
to preload a huge amount of necessary
information. One technique to avoid this is
hibernation, described here

http://jultika.oulu.fi/files/
nbnfioulu-201810062898.pdf

The environment used is a little different (and
granted, they were using an older version of
Android), but they still managed to go from
a 60-second boot to around seven seconds,
which is remarkable. But even though that’s
a huge improvement, they did reach a limit:
the technique required suspension of the
system on the flash memory, so performance
depended on the read speed.

Also, for the tests, they went into hibernation
mode immediately after boot, which
doesn’t represent reality and leads to an
underestimation of the boot time, since RAM
use is much lower right after boot-up than it
is after using an app.

What’s more, this technique requires many
more changes that are more technical than
for Linux, and none of them allow a reduction
of the attack surface.

More detailed information about boot time
optimization in Android 8 is available here

https://source.android.com/devices/tech/
perf/boot-times

http://jultika.oulu.fi/files/nbnfioulu-201810062898.pdf

Android? Linux? My OS
recommendation for the Music
Player App project

Android is a very good choice for starting the
development of a product on an Evaluation
Kit (EVK), while waiting for a customized
board. It gives you a usable environment
very quickly, and lets you deploy and test
Android apps immediately at the beginning
of the product’s life cycle, for example, to
create a proof-of-concept.

However, it tends to be pretty weak
compared to Linux in terms of long-term
security, maintainability, performance, and
boot time, particularly on customized boards .

Qt provides all the necessary tools to ease
development with Linux. It may also be used
on nearly every other major embedded and
desktop operating system (QNX Neutrino,
Green Hills INTEGRITY, VxWorks, and
more). Android has no real clear advantage
there.

Both operating systems allow you to quickly
get an environment up and running (if you
use existing distributions) and deploy and

test Qt applications immediately at the start
of your product life cycle. That is perfect for
producing a POC.

Android drivers are updated less frequently
than Linux drivers. Android is more difficult to
customize and extend, and security updates
can take some time before being available
(if at all) on your device.

And Linux needs far less RAM and
flash memory which allows reducing the
production costs.

So I recommend that, for our test, we use
Linux as the OS.

Now that the choice is made, I’ll let Erwan
and Stephen compare Android and Qt at the
application development level! I’m going to
go buy some popcorn, pull up a comfy chair
and watch.

Part 1
Recap

Android Linux

Necessary RAM 512 MB 128 MB

Necessary flash memory 1 GB 512 MB

Customization YES NO

Boot time optimisation 7 sec. <1.9 sec.

<9>

Comparing
Development
of our Music Player
on Android and Qt
Our test app, Music Player App, is a
simplified music player that will let us
compare development methods and tools
for embedded software in C++/Qt and Java/
Android.

Erwan and Stephen will develop the app
simultaneously, and compare Qt and Android
in terms of functions, ease of development
and development time.

Our app has to perform the following
functions, which will allow us to compare
strengths and weaknesses in the two
frameworks:

• Display a mobile interface, for interacting
with the app.

• Select a file containing an artist’s
discography, so users can download songs
to play.

• Display the song list and provide the usual
filtering options (by artist, album or genre).

• Read each song’s metadata to create a
model within the app (both for displaying
and filtering).

• Play tracks, both via a dedicated screen with
all the usual controls (pause/play, progress
bar, volume control, and next/previous track)
and a sidebar on other menus that includes
minimal controls (pause/play) and the option
to return directly to full-screen.

In this paper, we’re also going to talk about
the “Integrated Development Environment”
(IDE) for each of these frameworks,
provided by their editors: QtCreator by The
Qt Company and Android Studio by Google.

Stephen
will develop in Qt,

Erwan
will develop in Android

PA
RT

 2

Language versions
Qt Application:
C++11/Qt 5.13 -
Android Application:
Java 8, Android
API 28

<10>

<11>

With Android, we see the utilization of
a dedicated markup language (XML)
to define the screens. Naturally, the

app will be composed of a UI module that
encapsulates these definitions and a back-
end module that encapsulates the data
manipulation. Remember that, unlike Qt, the
XML references are compiled on the go and
made available on the Java end for better
auto-fill.

As I understand it, since you don’t have
access to that kind of verification, you won’t
catch any little syntactic errors until you
actually run the app. Isn’t that awkward?

You’re only partly right, since a QML
compiler actually exists. It will catch
errors related to the QML syntax and

semantics, but indeed errors with bindings,
between QML components or even with the
C++ back end, and JS errors aren’t verified
upstream.

As the compiler is opt-in, this method has its
advantages, like a shorter compilation time
during development (since files are simply
deployed with the rest of the app, then
uploaded on demand).

Architectural Breakdown: Qt 1 // Android 1

ANDROID AND Qt,
LET’S COMPARE.

1/ Architectural Breakdown

For development, our media player
application separates its functions into
two modules, according to the SOLID best
practices for encapsulation:

• One back end module to handle the song
files, compiled as a module exposing an
API, accessible by QML.

• One interface module, acting as the main
application, which presents the various
controls to the user.

This separation of functions is even
more practical with Qt, because the
Qt framework uses two languages,

C++ and QML, and each has its own separate
purpose. The back end module is written in
C++ to facilitate interaction with the OS and
the many modules within the Qt framework
that supports the handling of specialized
files (media audio files in our case). The GUI
module is written in QML, to support the
organization of components in a declarative,
natural way (a component contained within
another component is automatically a “child”
and will be automatically positioned relative
to its “parent”)

<12>

2/ Mobile Style Interface

2.1/ From Design to Implementation

Using Qt Design Studio lets the
designer create their interface using
their favorite graphic design software

(Photoshop or Sketch, for example), then
import the design file directly into Design
Studio, which then automatically creates
the corresponding QML components. It
really speeds up this phase of development.
Integration with the rest of the app is then
mainly done through QML bindings with
the back end module, in the case of Music
Player so that it can handle audio files.

Argh, I don’t have anything like that,
so it probably took me a lot longer.
I couldn’t use your resources and

original graphics in Photoshop. In fact,
instead of Photoshop, I exported the PSD
file in Zeplin. For me, integration was
conceptually the opposite. You referenced
your C++ API with QML, while I pulled the
references for the graphic components
from the Java end. Okay, I admit it, it’s a
lot wordier. That said, there is a binding
available now with Android Jetpack, but I
didn’t use it.

From Design to Implementation
> Qt 1 // Android 0

2.2/ Internal Navigation

Navigation of the different pages
is managed by a stack, which
makes it much easier to manage

the history. The manipulation of the stack
is very flexible. You can add one or more
components, specify a set of parameters for
the instantiated component or components,
or even specify the type of transitions to
make (using the graphic transitions defined
in the initial stack view object).

A few years ago, that was pretty
difficult to do on Android. But
with Android Jetpack and its

Navigation class (https://www.youtube.com/
watch?v=JFGq0asqSuA), now I’d say that
it’s just as easy and even clearer to navigate.

Internal Navigation > Qt 1 // Android 1

2.3/ Component Display

Every page is organized with
traditional layouts (columns/rows,
grids, or comparatively), which lets

you position elements relative to each other
to preserve the layout when the application
runs on screens of various sizes. Also,
integrating JavaScript into the QML lets
you define bindings for the dimensions of
various components using ternary operators
based on various application properties
(orientation, available resolution, etc.).

https://www.youtube.com/watch?v=JFGq0asqSuA

<13>

With Android, obviously, the same
layouts are available to use.
However, you can’t include scripted

language in the XML files. Nevertheless,
dimensions (margin, padding, height,
width, …) can be defined in dedicated files
organized by target resolution. It is efficient
but if you have too many specific cases, you
end up with too much boilerplate code. You,
on the other hand, only had to throw in a few
ternary operators to manage the different
sizes. I guess in the hands of some novices,
it could come out messy.

Actually, since you brought up the resolution,
in Android we indicate sizes in “density-
independent pixels” and “scale-independent
pixels.” Does Qt have something to offer for
that?

Yes, definitely. For managing high
DPI screens, Qt versions 5.6 and
later offer global attributes that are

configured in the QCoreApplication, as well
as environmental variables that allow you to
activate and deactivate scaling, or configure
it independently for specific screens. Also,
implementation of this kind of scaling is
going to depend on the characteristics of
the various OS (retina screens on macOS,
different levels of zoom on Windows, etc.)
or else use the values configured by the
developer if manual control is needed (for
more restricted OS, for example, dedicated
Linux boards).

Now that I’m thinking about all of it, if I am
right all that JS definitely wasn’t generated
by Design Studio. And I’m getting suspicious
because I see a lot of it in your dynamic
screens. I’m not sure I believe you when you
say that all that was automated. I think you
went back over it yourself.

Component Display > Qt 1 // Android 0

3/ Discography Selection and
Downloading

3.1/ Searching for files in the device
filesystem

An existing, system-agnostic, QML
component (FileDialog) allows you
to integrate a native file explorer into

the operating system to select songs. It’s
very, very easy.

With Android, one app can delegate
an action (in this case, the folder
selection) to any other app that can

process it. That’s how the “share” function in
your photo software works, for example. It
couldn’t be more decoupled.

File searching > Qt 1 // Android 1

3.2/ Importing Files

For the back end module, Qt offers
classes for browsing the directories
and files (QDir, QFile, QFileInfo, etc.

in the QtCore module) in the file system to
find the music file paths that can be read by
the app. This feature was actually integrated
into the C++ standard in the C++17 version,
as an ̀ std::filesystem` module in its standard
library.

Classes for browsing the file tree
(java.nio.file) have been available in
Java since at least version 1.2 (java.

io.File*). It’s not even a topic for discussion
anymore.

Importing Files > Qt 1 // Android 1

<14>

4/ Presentation and Filtering of
the Discography Representation
Model

4.1/ Modeling and Filtering Songs

 To manipulate data models, Qt offers
a generic class, QAbstractListModel,
that lets developers connect data

getters with attributes (like artist, album,
length, etc.). Besides the QAbstractListModel,
you can also use a QSortFilterProxyModel.
I assigned them particular attributes (one
attribute for each) and a filter condition. This
kind of model is integrated directly into the
lists’ QML components, allowing you to filter
by masking which has a minimal cost in
relation to performance.

I saw that in your code, it’s like a
wordier version of Linq (in C#). But
whatever it is, I haven’t seen anything

like it in Java or Android. I eventually used
Streams and old fashioned sorting and
filtering.

It’s an approach that’s actually
a lot like SQL views. It improves
performance in terms of access to

filtered models by avoiding costly operations
on the initial list every time the interface
wants to access it. As a bonus, multiple
QSortFilterProxyModel can be chained for
further filtering.

Modeling and Filtering Songs
> Qt 1 // Android 0

4.2/ Graphics

When it comes to UI graphics, the
QML components make decoupling
and reuse easier, allowing list

displays to independently define the
container (including its height, position,
screen fill, etc.), the model (here, our
QSortFilterProxyModel defined previously in
the backend module, directly accessible by
and compatible with the QML component)
and the delegated component that displays
each of the elements in the list.

As we already said, in Android,
screens are defined by their structure
and the static data in the XML files.

They’re just as decoupled and reusable as
your QMLs. The dynamic components you
get with JavaScript are managed by the
element selector, which makes it possible
to apply characteristics (border size, colors,
fonts, background, etc.) to the components
according to their state, the goal being to
minimize programmatic manipulation.

Display > Qt 1 // Android 1

<15>

5/ Analysis of Media Content
Metadata

The Qt Multimedia module offers
classes (QMediaPlayer) dedicated
to handling media files (in our case,

audio files tagged with complementary
information/metadata). These classes
permit asynchronous reading and
processing of metadata, which then serve as
a discography model (as explained above).

The “android.media” package
provides all you need to read media
files and explore their metadata. But

actually, I see that your app doesn’t display
album covers, even though that’s metadata.

Chalk one up to you. Since the
metadata that contains the album
cover directly contains the raw data

for a PNG image, displaying the images is
a little more complicated. Because QML
Image components only accept resource
URIs, you have to set up an ImageProvider
on the back end to be able to turn QML URIs
into QImages from the metadata. That isn’t
as easy as just providing the bitmap of the
image directly to the component.

Analysis of Media Content Metadata
> Qt 0.5 // Android 1

6/ Reading Audio Media

Reading audio is done by media
classes from the Qt framework,
so it’s entirely managed by the

back end module (which interacts with the
operating system’s audio drivers via the Qt
framework).

This creates two important features:

 • First of all, reading audio doesn’t depend on
the state of the interface, which means that
the music can be playing in the background
while the user browses the rest of the app.

 • Second, the functions can be decoupled,
so the back end module can define the API
that the interface accesses to display media
information (title, album, total length, etc.)
and the controls for the music that’s playing
(play/pause, next/last track, volume control,
etc.).

This way of doing is system agnostic, but it
requires the OS to expose audio and video
drivers that are supported by Qt.

As I said before, I like to use
the “android.media” package,
specifically with the MediaPlayer

class that lays out everything needed to play
music and control the position and volume.
I did still have to encapsulate it to manage a
song list. That said, there is a more complete
MediaPlayer in JetPack (androidx.media2),
but it’s very new (the first version came out
in September 2019). So it’s a tie?

Yes, this time the two approaches
are equally efficient.

Reading Audio Media > Qt 1 // Android 1

<16>

7/ Controls and Accessibility

Although I didn’t use them in this
demonstration, the Qt framework
does offer options to facilitate

app accessibility. For QML components,
accessibility can be configured as a group of
added properties (https://doc.qt.io/qt-5/qml-
qtquick-accessible.html), which allows you
to describe the role, name, purpose of the
control component, and other properties that
make it easier to fill in fields and navigate a
page or form.

Accessibility is completely managed
by Android. You just have to fill in a
few extra fields, for example, image

descriptions or a contextual help. Android
Studio gives you a warning if there’s
anything missing, which is really nice to help
ensure accessibility.

Controls and Accessibility > Qt 1 // Android 1

8/ Internationalization

For the i18n, everything’s managed
in Android Studio without interrupting
the flow of development. You write

the translation key, Alt + Enter, you write
the caption in the main language, and
you’re back in your code. You end up with a
minimal XML that just has to be duplicated
for the translators. During replacement, the
translation closest to the locale is used,
with fallback to the language family, then
the default language. Obviously, since
Android Studio integrates the XML files, any
renamed keys are global.

The generation process for
internationalization files is more
manual with Qt, I have to concede

this point. Generation is done by an external
tool that parses the code files, detecting
where to find translations marker based
on syntactic analysis (both in QML, with a
JavaScript function, and in C++). Under
these conditions, changing a key requires a
new analysis execution on the entire code
base.

However, in the lifecycle of an application,
translations will not be handled solely by the
developers. For the translators, Qt provides
a dedicated tool, Qt Linguist, that makes it
easy for them to enter translations and see
which ones still need to be filled, without
having to delve in the more technical XML
file.

Internationalization > Qt 1 // Android 1

<17>

9/ Ease of Development

Qt offers Qt Creator, a simple,
lightweight IDE designed for
developing in C++ that also

integrates a local help database for the many
components in the Qt framework. The IDE
also facilitates the deployment of the app
on the target device during development. It
offers deployment and debugging methods
through a local network (deployment via
SSH or SFTP, and remote execution of the
software on the target device, debugging
using the GNU C++ GDB).

Android Studio is based on IntelliJ
IDEA, the older brother of the
Jetbrains IDE suite. In my humble

opinion, it’s the most complete IDE family on
the market. It has a lot of advantages over
your text editor:

• Transparent on-target deployment of the
application

• On-target debugging that’s perfectly
integrated with adb

• A real usage search method (not a
dressed-up “search across project”)

• Powerful static analysis that adds tons of
additional warnings

• Naming suggestions

• So much contextual auto-fill using “Alt +
Enter” that you practically want to marry it.

Yeah, it’s a bit more developer-
friendly on Android Studio, but it’s
not like there is a complete lack of

tools to work with Qt and C++.

On the generic tools’ side, the C/C++
development suite is bulletproof on Linux
(GCC, G++, GDB and its server variant,
Valgrind and its variants, or even the
LLVM tool suite – ClangFormat, ClangTidy,
ClangD, etc. –), and those are partially
integrated in Qt Creator, along with Qt’s own
profiler for QML interfaces.
On the syntactic and semantic side, Qt
Creator takes the same route as Android
Studio, slowly but surely, via the development
and integration of LSPs (Language Server
Protocols) that let you skip the additional
development of analysis tools.

Additionally, the Qt application can be built
as an Android .apk using Qt Creator. For
that matter, it can target any embedded
environment (e.g. iOS, RTOS).

Ease of Development > Qt 0 // Android 1

<18>

SOME SCREENSHOTS OF OUR
MUSIC PLAYER APP ON A NXP
i.MX 8 QUAD BOARD

Qt version

Home page

Home page

All songs page

All songs page

Playing song page

Playing song page

Android version

<19>

KEY TAKEAWAYS FROM OUR
ANDROID AND Qt COMPARISON

After feverish debate on each subject, here
are our final conclusions:

• Interface and UX
for mobile applications

Qt has the advantage here. Both frameworks
implement best practices (separation of
the interface and business logic, and a
responsive design tool), but the flexibility of
QML (via its JavaScript integration) makes
it easier to create dynamic interfaces while
limiting wordiness in sources.

• Manipulation of media files

There’s no clear winner here. Both
frameworks offer all the tools that seem
necessary for file access, locally or via
remote flow, as well as the metadata in the
media files.

• Comfort and Ease
of Development

The Android development environment wins
out over Qt and QtCreator, thanks to its
more significant developer assistance and
better abstraction of targeted deployment
and debugging problems.

However, Qt offers Qt Design Studio, a
tool that effortlessly connects graphic
design and QML interface creation. There’s
no equivalent to this tool in the Android
environment.

• Performance
The responsiveness of both applications’
interfaces is good. In fact, they are very
similar, except for the song list display,
which functions progressively in Android
and appears “instantly” in Qt. Without getting
into the debate over the pure performance
of C++ compared to Java, this does show
the efficiency of Qt’s filtered model system.

On this particular project, Qt wins, mainly
because of its sorting and filtering of the data
model. But the real answer is “it depends.”
There’s no clear winner, it all depends on
your priorities for your own project.

In this article, we’ve compared the functions
and development “comfort” of the Android
and Qt frameworks.

To get a more complete picture, it would
be interesting to compare Qt and Android
in terms of app performance for the user,
particularly its fluidity (mp3 parsing, list
display on different screens, etc.). That
could even be the subject of another duel.

If you want to access our code, click here.
https://github.com/Witekio/qt-and-android-
whitepaper-apps

Qt Android

ARCHITECTURAL BREAKDOWN 1 1
MOBILE STYLE INTERFACE

From design to implementation 1 0
Internal navigation 1 1
Component display 1 0

DISCOGRAPHY SELECTION AND DOWNLOADING

File searching 1 1
Importing files 1 1

PRESENTATION AND FILTERING

Modeling and filtering songs 1 0
Display 1 1

ANALYSIS OF MEDIA CONTENT METADATA 0,5 1
READING AUDIO MEDIA 1 1
CONTROLS AND ACCESSIBILITY 1 1
INTERNATIONALIZATION 1 1
EASE OF DEVELOPMENT 0 1
TOTAL 11,5 10

Part 2
Recap

<20>

Paris • Lyon • Frankfurt • Bristol • Seattle

18+ YEARS
SOFTWARE SYSTEM

EXPERTISE

200 INNOVATIVE
DEVICES PROJECTS/YEAR

100+ EMBEDDED
AND IOT SOFTWARE

ENGINEERS

5 OFFICES IN EUROPE
AND USA

