5 FACTORS
Yocto distro

W

Witekio

A checklist with 5 success factors to deploy Yocto for production-grade
embedded devices. The aim is to provide a 360° view.

Busines Team
Development Team

Future-
proof
Visible & Easy to
Controllable - E_o maintain
o- -0
T
RERRE Secure
Reliable

DevOps Team Security Team

Your Customers
& Everyone

Witekio

AN AVNET COMPANY

Devices should be...

B Easy to Maintain

.

Simple environment

Provide dev. environment
e Git, python, repo, ...
e (ontainer and companion scripts
e Prefer prebuilt container image
o Stable environment and package versions

Document the main dev. workflow
e Essential to newcomers and to share knowledge within the team
e Crunch time = no time for doc but help wanted!

Enable build history
e Easier troubleshooting in case of regression
© INHERIT += "buildhistory"
BUILDHISTORY _COMMIT ="1"

Shrink build times
e Share downloads and sstate (NFS, SSHFS, ...)
o site.conf:
DOWNLOAD DIR =
SSTATE_DIR =
SSTATE _MIRRORS =
e Ask for a beefier machine &

Central package server (Nice to have)
e Prebuild and share packages
o bitbake world
o Run a package server
o Use PR service to version packages

N

Witekio

Devices should be...

e T
d T L

- '.l

Easy to Maintain

Reproducible builds

Automate Yocto builds
e Nightlies: relatively easy, cache downloads and state
e Automate from cloud, build on premise
o GitLab runners, Azure DevOps self-hosted agents
e Pull request validation: highly valuable
o Trigger build from another repo, override package or layer
o SRCREV_pn-$PACKAGE _NAME =

Version your OS and pin everything
e \/ersion code, layers, and configuration
o repo, git submodules, ...
¢ Pin meta-layers tags or commit
e Tagyour 0S
e Update “os-release”
o Version, type of build, ...

Archive release build environment (Nice to have)
e Yocto: Reproducible Builds affiliated v
Your setup 1 year from now: likely KO @
o Main culprit: external tools
Archive source, tools, environment
o Downloads
o \/M or prebuiltimage
Annotate your release with its build environment
Keep the build manifest: layers & packages version hash

N

Witekio

Devices should be...

Secure

OS Security features

Minimize attack surface

e Define prod and prod-secure images

e No dev/debug tools, or unnecessary packages
o Image from scratch, core-image-minimal
o Disable recommended packages

e No root login, proper users, firewall

e Disable serial, JTAG,USB (or exceptions)
o meta-security

Provide a secure secret store
e TPM, Secure Element, TrustZone-based
e Device keys, credentials, secrets

Use Secure boot
e BootROM, SSB, U-Boot, Kernel/initramfs/dtb
e Rootfs if possible / readonly
o dm-verity
e Use key hashes, 1-2 backup secure boot keys, and support revocation
o ...And test it!

Encrypt disks, prevent writes (Nice to have)
e Encrypt partitions, LUKS, dm-crypt, and secret store
e Read-only filesystem (SquashFS), or mounted read only

N

Witekio

Devices should be...

Secure

Other features

Apps: Least privilege principle
e MAC: SELinux, AppArmor
e seccomp, cgroups, chroot, runc
e (ontainers, AWS Greengrass, Azure loT Edge

Monitor and address vulnerabilities
INHERIT += "“cve-check”

e meta-timesys provides a few tools
Complex and time consuming

No package = no exploit

Automate on-device identity provisioning
e Unique x.509 certificates
o Signed from an intermediate certificate
o QOr pre-provisioned in a secure element

Consider standards and
regulations (Nice to
have)
e Likely to become
more important
e Europe: ETSI EN 303
645
e US: NIST 8259A

Avoid or automate device provisioning in the cloud

e Azure DPS, AWS
e QOption A. Authorize an intermediate cert

o Used to sign devices, done once per intermediate cert

e QOption B. Pre-provisioned secure elements

o Done during chip manufacturing, from a secure software factory (TO136)

e Option C. Automate and secure

Support rolling device certs, and updating root CAs

e Software update or otherwise
e Root CAs too!

N

Witekio

Devices should be...

Fast and reliable

Boot and runtime

Fast (enough) Boot time

Start from a minimal image

Compile for size, link statically, strip binaries, use to musl or uCLibc
Postpone drivers and services

Btrfs, squashfs

e .. orjustdump asmall logo/animation from the U-Boot!

Fast (enough) & Responsive UX

e Compile for speed » Leverage cores, CPU instructions, priority
e 2D, 3D, and video hardware acceleration

e (Crypto hardware acceleration

e Accelerated libs: GUI, Al inference, ...

Yocto and test automation
e Based on AutoBuilder2, helper, and
Buildbot
o Not necessarily a good fit for you
Automate on-device tests
e Ptest, ptest-runner
o DISTRO_FEATURES:append =" ptest"
EXTRA_IMAGE _FEATURES += "ptest-pkgs”
LTP (Linux Test Project)
o IMAGE_INSTALL:append =" Itp"
And device-specific tests
Automate with Labgrid, Pluma, Fuego, Lava, Buildbot, KernelCl
Integrate with GitLab runners

Automate tagging and deployment (Nice to have)
e Manual release “trigger”, automated release
e More consistent, less errors
e (an tag, archive build environment, ...
Push to your OTA update backend and/or package host

Devices should be...

Visible
(Observable)

Open -source licenses

Ensure OS licenses compliance
e Save manifest of all license, and ship in the binary

O

O

O

COPY_LIC_MANIFEST ="1"
COPY_LIC_DIRS ="1"
LICENSE _CREATE _PACKAGE ="1"

e Archive source

O

INHERIT += "archiver"

ARCHIVER _MODE[src] = "original" # OR
ARCHIVER _MODE[src] = "patched"
ARCHIVER_MODE[diff] = "1"

e Some references:

O

O O O

Yocto's manual regarding compliance
OpenChain ISO 5230, Open Compliance Program
FOSSology license tracker

Various commercial tool

N

Witekio

Devices should be...

Controllable

Over-the-air updates

Support OS updates
e (OSTree, RAUC, Mender, swupdate
o And their respective meta layers
o Avoid non-atomic update like apt
e Kernel, packages, ...
e Sign your updates, look for delta updates

Support Application updates (Nice to have)
e Different frequency, more flexibility & less bandwidth
e RAUC, Mender, OSTree, or managed deployment
o Azure loT Edge, AWS Greengrass, ...

Provide OTA update online dashboards
e Hawkbit, Mender, ThingsBoard, Full Metal Update

Provide a fallback mechanism

e What happens the OS, or update mechanism is KO?
e Recovery initramfs, A/B, golden/base image

e Or a combination of those

e Testand re-test

N

Witekio

Devices should be...

Controllable

Remote operations

Support remote device configuration
¢ Device twins... again!
e (loud “desired” configuration, stored in same JSON
o Desired network config, logging mode, CPU throttling (hot device), ...
e Received whenever connected, and persistent

Support arbitrary operations (Nice to have)
e Provide a quick flexible way to support any operation
o Specific repair job, test or experiment new features
e Running jobs and applications from container
o Azure loT Edge, AWS loT jobs, AWS loT Greengrass

Manual control and debugging

Provide remote manual access

e Reverse SSH, OpenVVPN/IPsec/wireguard, ngrok

e As well as local access: GUI, USB drive script

e Enabled on demand, for a limited duration

e Update firewall rules, authorized devices, ...

e orreboot in maintenance mode

e After asecure call from your cloud platform and/or physical interaction

Support remote troubleshooting & debugging (Nice to have)
Is it acceptable to ship the device back?
LTTng (meant for prod), ftrace,
Generate and save debug symbols
o IMAGE_GEN_DEBUGFS ="1"
Install or run 'gdb-server' on-demand

N

Witekio

Devices should be...

Reusable & Future proof

Yocto and reusing 0S-level work

Limit “hacky” customizations

e Limit bbappends

e Avoid patching more than a few files in one recipe

e Tradeoff between upstream improvements, and maintenance

Prefer reusable meta and config
e Separate layers to allow reuse

o Hardware, software, platform-specific features
e WIC: custom wks and partitions

o More tools to interact, customize and introspect
e Deuvice tree includes and overloads
e LTS when it makes sense

Prepare by upgrading Yocto
e Once you know which is the ideal Yocto version

e QOtherwise very hard to reuse meta/recipes/classes across different Yocto
versions

Contribute layers, recipes, classes (Nice to have)
e Generic layers, recipes, classes
o Chances are others need it, and will help maintain them
o Submitit to https://layers.openembedded.org/
e Yocto features & issues
o create-pull-request, send-pull-request
o bugzilla.yoctoproject.org

N

Witekio

Devices should be...

Reusable & Future proof

Application-level

Abstract device & OS specificities
e App software architecture
e Rely on standard file location and mechanics

e Makes development easier

Ensure application(s) modularity
e (ore logic, connectivity, Ul, GUI, storage
e Atacomponent level minimum:
o Source components, plugins, or services
e Future: headless, gateway, splitin 2 devices

Self-contained application (Nice to have)
e (Containers, snapd/flatpak, self-contained binaries (Golang, Rust, ...)
e Much easier to deploy/reuse, but larger
e System or app update, managed services
o Azure |loT Edge, AWS Greengrass, ...

Use standard tools and protocols

e Most of the time, something already exists

e Prefer what the industry uses (most of the time)
o Conferences, blogs, Yocto mailing list, Gartner, ...
o yocto@lists.yoctoproject.org

e When applicable, prefer standards for interop.
o Matter, BLE profiles, ...

N

Witekio

Summary

Use the checklist before release. The sooner the better!

The 6th Success factor: the human one, YOU

e (ontribute to its success, see something others didn't see
¢ Internally: review, ask, and suggest features
e |earning opportunity

Busines Team
Development Team

Future-
proof

Visible & Easy to
Controllable V??_o maintain
0z
844

299

Fast &

DevOps Team Reliable Secure

Security Team

Your Customers
& Everyone

Contact Us for more info

Witekio

AN AVNET COMPANY

https://witekio.com/contact/
https://witekio.com/contact/

