
5 FACTORS5 FACTORS
to build a production gradeto build a production grade

Yocto distroYocto distro
Embedded / IoT DevicesEmbedded / IoT Devices

Busines Team Development Team

Security TeamDevOps Team

Your Customers
& Everyone

A checklist with 5 success factors to deploy Yocto for production-grade
embedded devices. The aim is to provide a 360° view.

Easy to MaintainEasy to Maintain

Simple environmentSimple environment

Git, python, repo, …
Container and companion scripts
Prefer prebuilt container image

Stable environment and package versions

Provide dev. environment

Essential to newcomers and to share knowledge within the team
Crunch time = no time for doc but help wanted!

Document the main dev. workflow

Easier troubleshooting in case of regression
INHERIT += "buildhistory"

Enable build history

 BUILDHISTORY_COMMIT = "1"

Share downloads and sstate (NFS, SSHFS, …)
site.conf:

Ask for a beefier machine 😇

Shrink build times

 DOWNLOAD_DIR =
 SSTATE_DIR =
 SSTATE_MIRRORS =

Prebuild and share packages
bitbake world
Run a package server
Use PR service to version packages

Central package server (Nice to have)

Devices should be…

Easy to MaintainEasy to Maintain

Reproducible buildsReproducible builds

Nightlies: relatively easy, cache downloads and state
Automate from cloud, build on premise

GitLab runners, Azure DevOps self-hosted agents
Pull request validation: highly valuable

Trigger build from another repo, override package or layer
SRCREV_pn-$PACKAGE_NAME =

Automate Yocto builds

Version code, layers, and configuration
repo, git submodules, …

Pin meta-layers tags or commit
Tag your OS
Update “os-release”

Version, type of build, ...

Version your OS and pin everything

Yocto: Reproducible Builds affiliated ✔

Your setup 1 year from now: likely KO ☹

Main culprit: external tools
Archive source, tools, environment

Downloads
VM or prebuilt image

Annotate your release with its build environment
Keep the build manifest: layers & packages version hash

Archive release build environment (Nice to have)

Devices should be…

SecureSecure

OS Security featuresOS Security features

Define prod and prod-secure images
No dev/debug tools, or unnecessary packages

Image from scratch, core-image-minimal
Disable recommended packages

No root login, proper users, firewall
Disable serial, JTAG,USB (or exceptions)

meta-security

Minimize attack surface

TPM, Secure Element, TrustZone-based
Device keys, credentials, secrets

Provide a secure secret store

Encrypt partitions, LUKS, dm-crypt, and secret store
Read-only filesystem (SquashFS), or mounted read only

Encrypt disks, prevent writes (Nice to have)

BootROM, SSB, U-Boot, Kernel/initramfs/dtb
Rootfs if possible / readonly

dm-verity
Use key hashes, 1-2 backup secure boot keys, and support revocation

… And test it!

Use Secure boot

Devices should be…

 INHERIT += “cve-check”
meta-timesys provides a few tools
Complex and time consuming
No package = no exploit

Monitor and address vulnerabilities

SecureSecure

Other featuresOther features

MAC: SELinux, AppArmor
seccomp, cgroups, chroot, runc
Containers, AWS Greengrass, Azure IoT Edge

Apps: Least privilege principle

 Likely to become
more important
Europe: ETSI EN 303
645
US: NIST 8259A

Consider standards and
regulations (Nice to
have)

Unique x.509 certificates
Signed from an intermediate certificate
Or pre-provisioned in a secure element

 Automate on-device identity provisioning

Azure DPS, AWS
Option A. Authorize an intermediate cert

Used to sign devices, done once per intermediate cert
Option B. Pre-provisioned secure elements

Done during chip manufacturing, from a secure software factory (TO136)
Option C. Automate and secure

 Avoid or automate device provisioning in the cloud

Software update or otherwise
Root CAs too!

 Support rolling device certs, and updating root CAs

Devices should be…

 Compile for speed • Leverage cores, CPU instructions, priority
2D, 3D, and video hardware acceleration
Crypto hardware acceleration
Accelerated libs: GUI, AI inference, …

 Fast (enough) & Responsive UX

Fast and reliableFast and reliable

Boot and runtimeBoot and runtime

 Start from a minimal image
Compile for size, link statically, strip binaries, use to musl or uCLibc
Postpone drivers and services
Btrfs, squashfs
… or just dump a small logo/animation from the U-Boot!

 Fast (enough) Boot time

 Based on AutoBuilder2, helper, and
Buildbot

Not necessarily a good fit for you

 Yocto and test automation

Ptest, ptest-runner
DISTRO_FEATURES:append = " ptest"

LTP (Linux Test Project)
IMAGE_INSTALL:append = " ltp“

And device-specific tests
Automate with Labgrid, Pluma, Fuego, Lava, Buildbot, KernelCI
Integrate with GitLab runners

 Automate on-device tests

 EXTRA_IMAGE_FEATURES += "ptest-pkgs“

Devices should be…

Manual release “trigger”, automated release
More consistent, less errors
Can tag, archive build environment, …
Push to your OTA update backend and/or package host

Automate tagging and deployment (Nice to have)

VisibleVisible

Open -source licensesOpen -source licenses

Save manifest of all license, and ship in the binary
COPY_LIC_MANIFEST = "1"
COPY_LIC_DIRS = "1"
LICENSE_CREATE_PACKAGE = "1"

Archive source
INHERIT += "archiver"

Some references:
Yocto's manual regarding compliance
OpenChain ISO 5230, Open Compliance Program
FOSSology license tracker
Various commercial tool

 Ensure OS licenses compliance

ARCHIVER_MODE[src] = "original" # OR
ARCHIVER_MODE[src] = "patched"
ARCHIVER_MODE[diff] = "1"

Devices should be…

(Observable)(Observable)

Over-the-air updatesOver-the-air updates

OSTree, RAUC, Mender, swupdate
And their respective meta layers
Avoid non-atomic update like apt

Kernel, packages, ...
Sign your updates, look for delta updates

 Support OS updates

Hawkbit, Mender, ThingsBoard, Full Metal Update
 Provide OTA update online dashboards

What happens the OS, or update mechanism is KO?
Recovery initramfs, A/B, golden/base image
Or a combination of those
Test and re-test

 Provide a fallback mechanism

Devices should be…

 Different frequency, more flexibility & less bandwidth
RAUC, Mender, OSTree, or managed deployment

Azure IoT Edge, AWS Greengrass, ...

Support Application updates (Nice to have)

ControllableControllable

Remote operationsRemote operations

Device twins… again!
Cloud “desired” configuration, stored in same JSON

Desired network config, logging mode, CPU throttling (hot device), …
 Received whenever connected, and persistent

 Support remote device configuration

Reverse SSH, OpenVPN/IPsec/wireguard, ngrok
As well as local access: GUI, USB drive script
Enabled on demand, for a limited duration
Update firewall rules, authorized devices, ...
or reboot in maintenance mode
After a secure call from your cloud platform and/or physical interaction

 Provide remote manual access

Devices should be…

Provide a quick flexible way to support any operation
Specific repair job, test or experiment new features

Running jobs and applications from container
Azure IoT Edge, AWS IoT jobs, AWS IoT Greengrass

Support arbitrary operations (Nice to have)

ControllableControllable

Manual control and debuggingManual control and debugging

Is it acceptable to ship the device back?
LTTng (meant for prod), ftrace,
Generate and save debug symbols

IMAGE_GEN_DEBUGFS = "1"
Install or run 'gdb-server' on-demand

Support remote troubleshooting & debugging (Nice to have)

Yocto and reusing OS-level workYocto and reusing OS-level work

 Limit bbappends
Avoid patching more than a few files in one recipe
Tradeoff between upstream improvements, and maintenance

 Limit “hacky” customizations

Separate layers to allow reuse
Hardware, software, platform-specific features

WIC: custom wks and partitions
More tools to interact, customize and introspect

Device tree includes and overloads
LTS when it makes sense

 Prefer reusable meta and config

Devices should be…

Reusable & Future proofReusable & Future proof

Generic layers, recipes, classes
Chances are others need it, and will help maintain them
Submit it to https://layers.openembedded.org/

Yocto features & issues
create-pull-request, send-pull-request
bugzilla.yoctoproject.org

 Contribute layers, recipes, classes (Nice to have)

Once you know which is the ideal Yocto version
Otherwise very hard to reuse meta/recipes/classes across different Yocto
versions

 Prepare by upgrading Yocto

Application-levelApplication-level

 App software architecture
Rely on standard file location and mechanics
Makes development easier

 Abstract device & OS specificities

 Core logic, connectivity, UI, GUI, storage
At a component level minimum:

Source components, plugins, or services
Future: headless, gateway, split in 2 devices

 Ensure application(s) modularity

Devices should be…

Reusable & Future proofReusable & Future proof

Containers, snapd/flatpak, self-contained binaries (Golang, Rust, …)
Much easier to deploy/reuse, but larger
System or app update, managed services

Azure IoT Edge, AWS Greengrass, ...

 Self-contained application (Nice to have)

Most of the time, something already exists
Prefer what the industry uses (most of the time)

Conferences, blogs, Yocto mailing list, Gartner, …
yocto@lists.yoctoproject.org

When applicable, prefer standards for interop.
Matter, BLE profiles, …

 Use standard tools and protocols

Busines Team Development Team

Security TeamDevOps Team

Your Customers
& Everyone

SummarySummary

Contribute to its success, see something others didn’t see
Internally: review, ask, and suggest features
Learning opportunity

Use the checklist before release. The sooner the better!

The 6th Success factor: the human one, YOU

Contact Us for more infoContact Us for more info

https://witekio.com/contact/
https://witekio.com/contact/

